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ABSTRACT12

The elastic-plastic response of a large-tow 0o/ ±θo tri-axially braided composite is
numerically simulated to determine the elastic coefficients and post-yield behavior.
The ratios of extensional to flexural effective Young’s moduli vary from 0.30 to
0.52 in the longitudinal direction and 0.90 to 0.95 in the transverse direction.
Measurements on a 2-ply 0o/ ±30o braid support these numerical trends. The onset
of macro yield in uniaxial extension coincides with the experimental values in the
longitudinal direction while it is nearly twice the experimental values in the
transverse direction. In simple shear, matrix plasticity around the undulations
facilitates local rotation of the braiders at the onset of macro yield. Under uniaxial
flexure, modest stiffening occurs prior to strain softening in both the principal
directions.

INTRODUCTION

Due to fiber undulations present in woven and braided composites, the effective
lamina flexural and extensional properties are distinct quantities not derivable from
one another. Marrey and Sankar [1] calculated the extensional, bending, and
coupling matrices for a plain weave and a five-harness satin weave textile
composite plate using representative volume elements (RVEs) and periodic
boundary conditions, and showed that the extensional matrix could not be used to
construct either the bending or coupling matrices. Whitcomb et al. [2] used finite
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elements (FE) to examine a plain weave composite subjected to flexure and
explored how free surfaces influence the effective stiffness. Based upon lamination
theory, they developed an expression for Elam , the effective flexural modulus of the
laminate, given by
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where n  is the number of RVEs in the laminate, and E flex  and E  are the effective

lamina flexural and extensional Young’s moduli, respectively. Zywicz and Nguyen
[3] employed the FE method to determine the effective plane-stress extensional and
flexural properties of a 0o/ ±30o tri-axially braided composite lamina. The flexural
Young’s moduli were calculated to be just 0.52 and 0.92 of their extensional
counterparts in the longitudinal and transverse directions, respectively.
Measurements performed on a 2-ply system were in general agreement with their
FE predictions. They concluded that in systems that contain relatively few laminae,
e.g., large tow composites, or where delamination generates sub-laminates with few
laminae, it is important to use the independent effective flexural and extensional
properties.

While the elastic behavior of textile composites with polymeric matrices has
received substantial attention, less emphasis has been directed on the pre-damage
nonlinear response of these materials. In part, this is due to the assumption, which
may or may not be correct, that damage is primarily responsible for the nonlinear
behavior experimentally observed.

This paper extends the previous work of [3] in two directions. First, it analyzes
additional, geometrically similar, triaxial braids to determine how the ratio of
flexural to extensional elastic properties depends upon the braid angle. Second, it
calculates the nonlinear pre-damage extensional, flexural, and (simple) shear
response of a family of geometrically similar triaxial braided composites and
compares the calculated macro stress-strain responses with experimental data for a
subset of loadings and materials. The differences between the simulated and
experimental responses are used to infer the mechanisms responsible for the
observed nonlinear macro behavior.

DISCUSSION OF REPRESENTATIVE VOLUME ELEMENT

The RVE is shown schematically in Figure 1 and is similar to those used in [4-6].
The RVE contains two flat 0o axial tows, two pairs of piecewise linear undulating
braider tows oriented in the +θ and the –θ directions, and several resin pockets. The
tows are braided in a 2 X 2 pattern and have rectangular cross sections to preserve
their expansive characteristics. The ±θ braider cross over junction is offset from the
braider-axial tow cross over junction. The RVE geometry is defined by w , the
spacing between axial tows, θ, the braider angle, and t t ta b= +( ), the lamina



thickness. Here ta  and tb  are the tow thicknesses, and the subscripts a  and b
denote axial and braider tow quantities, respectively. The individual tow packing
density (fiber volume fraction), p , is determined from the tow width, d , the
number of filaments per tow, m f , and the filament diameter, d f , as
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The crimp angle φ depends strongly on the braider width and tow thicknesses, and
is given by
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The RVE idealization requires that d w 2a ≤  and d wb ≤ cosθ  for the braider tows
to undulate.

The RVE simplifies the microstructure in several significant ways. Undulations
are absent in the axial tows. The piecewise linear idealization of the braider tows

Figure 1. The unit cell: (a) planar view, (b) cross section perpendicular to +θ
braider, and (c) cross section perpendicular to axial tow

TABLE I. RVE DIMENSIONS AND CRIMP ANGLE

θ t  (mm) tb  (mm) db  (mm) l  (mm) φ

30o 1.550 0.467 6.647 17.60 23.5o

45o 1.753 0.569 5.462 10.16 34.5o

60o 2.286 0.836 3.721 5.866 42.7o



yields an overly large crimp angle (for higher fiber volume fractions), a
discontinuous fiber direction, and appreciable resin regions surrounding the
undulations. Consequently, neither tow representation depicts the true meandering
geometry of the fibers. The tows and resin boundaries appear pronounced and rather
abrupt compared to the dense melded appearance actually observed in micrographs.
Furthermore, only resin exists above and below the braider undulations.

Three similar tri-axially braided carbon fiber polymeric matrix composites are
considered. In each, the axial and braider tows contain 80,000 filaments ( m f ) with

an average fiber diameter of d f = 6.2 µm. The overall RVE fiber volume fraction is

approximately 50%, while the packing fraction in each tow is 75%. The axial fiber
spacing ( w) is 10.16 mm which yields an RVE width (2w) of 20.32 mm. To
minimize the crimp angle, da  is set at 5.08 mm ( w 2), and thus from (2), ta  is
found to be 0.613 mm. Table 1 summarizes the other pertinent RVE dimensions for
each composite examined.

The resin material is modeled as an elastic-plastic solid with J-2 power law
hardening. It has a Young’s modulus of 4.35 GPa, a Poisson’s ratio of 0.36, and a
flow stress, σ f , given by σ f =117.1( εp + 5X10–4)0.04 MPa, where εp is the

equivalent plastic strain. Table 2 lists the transversely isotropic Young’s moduli ( El
and Et), shear modulus ( G ), and Poisson’s ratios (ν) of the fiber, obtained from
product literature and data for similar carbon fibers, and of the tow. (The subscripts
l  and t  denote the longitudinal and transverse directions, respectively.) The elastic-
plastic tow response is constructed from the resin and fiber behavior and packing
fraction using a simple micromechanical model that employs an iso-strain
assumption in the fiber direction and a modified iso-stress assumption in the other
directions [7].

Three-dimensional FE simulations are performed with NIKE3D, a nonlinear
implicit FE code. In each case the RVE is discretized with 8992 8-node selectively
reduced, incompatible mode, hexahedral elements such that tow boundaries
coincide with element faces. While the meshes do not contain any irregular shaped

TABLE II. ELASTIC FIBER AND TOW PROPERTIES

El  (GPa) Et  (GPa) Glt  (GPa) νlt νtt

Fiber 234.3 34.5 24.1 0.300 0.400
Tow 176.5 10.8 5.01 0.315 0.520

TABLE III. EFFECTIVE RVE EXTENSIONAL AND FLEXURAL ELASTIC COEFFICIENTS

Extensional Flexural
θ El  (GPa) Et  (GPa) νlt Glt  (GPa) El  (GPa) Et  (GPa) νlt

30o 59.8 8.83 1.07 11.0 32.5 8.37 0.947
45o 40.0 14.8 0.686 11.5 15.1 12.5 0.631
60o 29.8 25.9 0.301 8.48 9.01 23.5 0.283



elements in the plane, wedge elements are used in the resin above and below the
braider undulations, and slide surfaces are used to constrain the undulation sides to
the adjacent mesh. Using the constraints and procedure described in [3], pseudo-
periodic displacement boundary conditions are imposed to determine the in-plane
elastic extensional, shear, and flexural coefficients. The corresponding nonlinear
“uniaxial” responses are obtained by modifying the linear boundary conditions
imposed on the adjacent rigid shells.

ELASTIC CHARACTERIZATION

Table 3 summaries the RVE in-plane elastic extensional and flexural properties.
In all cases, the coupling matrix and the extension-shear coefficients are four or
more orders of magnitude smaller than the other terms. Thus, these quantities are
presumed to be zero due to the symmetry of the non-undulating portion of the
braider tows. As expected, tow orientation strongly influences the directional
extensional and flexural moduli, i.e., as θ increases, Et  increases and El  decreases.
Also, the flexural coefficients are always smaller than their extensional
counterparts. The ratio of flexural to extensional Young’s modulus is between 0.30
and 0.52 in the longitudinal direction, but only between 0.90 and 0.95 in the
transverse direction. Clearly, the distance from the braider to the mid-surface has a
significant impact on this result.

Experimental Measurements of Elastic Properties

A series of extensional and flexural tests were performed to experimentally
measure the longitudinal properties of the 0/ ±30o composite. As described in [3],
five rectangular specimens 38.1 mm by 250.4 mm were machined from a 3.10 mm
thick 2-ply composite plate. Strain gauge rosettes, 6.35 mm by 25.4 mm, were
applied on the front and back specimen surfaces at the same location. The
specimens were first loaded in uni-axial tension to 0.5% strain. The stress strain
curve remained linear after the initial seat-in period. Next, the samples were tested
in flexure with a 4-point bend fixture. The minor and major spans measured 63.5
mm and 190.5 mm, respectively. Each specimen was tested, unloaded, flipped over,
and re-tested to generate a consistent set of load-deflection traces.

Due to large-scale tow movement during molding, the number of axial tows per

TABLE IV. MEASURED AND FE-BASED YOUNG’S MODULI AND POISSON’S RATIOS
FOR A 0o/ ± 30o BRAIDED COMPOSITE

Experimental

Specimen 1 2 3 4 5 Average

FE

El  (GPa) 55.7 51.5 38.8 64.6 57.7 53.7 59.81

νlt 1.06 1.21 1.11 1.17 1.31 1.17 1.07

E Elam l 0.728 0.808 0.804 0.671 0.898 0.782 0.849



unit length, q , varied significantly between specimens. A full width slice of each
specimen was removed immediately below the strain gauges, measured, and
subjected to a 4 hour 400o C burn-out procedure. (A section of the raw fiber was
subjected to the same procedure to determine the fiber mass lost.) The 0o fibers
were then collected and weighed. After adjusting for mass loss, q  for each
specimen was determined.

Table 4 contains the measured values of the extensional El  and νlt , and the ratio
of Elam , the effective longitudinal direction flexural Young’s modulus of the
laminate, to El  for each specimen. Since El  depends strongly upon q , the quantity
E qwl  is presented in an attempt to normalize the data for variations in q . (The

term qw  represents the ratio of the theoretical value of q , (1 w ), to the measured
value of q .) For comparison purposes, the FE based values are also listed as well as
an estimate of E Elam l  obtained from (1) using the FE results.

NONLINEAR MACRO RESPONSE

The extensional, bending, and simple shear responses were simulated. Uniaxial
stress was imposed in the longitudinal and transverse directions for each braider
angle. A nondimensional stress was defined as the macro stress divided by the
macro elastic stress Σe, calculated as Σe E= ε , where E  is the corresponding RVE
extensional Young’s moduli and ε is the imposed macro strain. Figures 2 and 3
show the Σe versus strain curve in the longitudinal and transverse directions,
respectively. The figures include two experimental curves for a 0o/ ±30o braided
composite similarly normalized. (Normalization with Σe renders the onset of
nonlinear behavior obvious.) The shear response, obtained under “simple shear”
conditions (no macro longitudinal strain), is plotted in Figure 4. Uniaxial bending,
without anticlastic curvature suppression, was examined about the two primary

Figure 2. Normalized longitudinal stress-strain curves from tests on a 0o/ ±30o

braided composite and various FE simulations



axes. Figure 5 shows the normalized bending moment, defined as the macro
moment divided by the macro elastic moment Me , versus the upper surface macro
strain for rotations imposed about the longitudinal (Long.) and transverse (Tran.)
axes. ( Me  is given by M EI te = 2 ε , where E  and I  are the corresponding flexural
Young’s modulus and moment of inertia, respectively.) While regions of modest
plasticity develop in the RVE for all loadings, this is not always apparent from the
macro stress-strain or moment-strain curves.

For the 0o/ ±30o braid, the predicted onset of macro yield in uniaxial extension
coincides with the experimental values in the longitudinal direction, while it is
nearly twice the experimental values in the transverse direction. This suggests that
softening arises in the longitudinal direction, at least initially, from plastic
deformation rather than damage where as the opposite appears true in the transverse
direction. In simple shear, diffuse matrix plasticity around the undulations
accommodates the braider rotations and out-of-plane displacement of the middle

Figure 3. Normalized transverse stress-strain curves from tests on a 0o/ ±30o braided
composite and various FE simulations

Figure 4. Shear stress versus shear strain (engineering) curves



RVE half (relative to the outer edges) after macro yield. Under uniaxial flexure,
moderate stiffening occurs prior to strain softening in both the principal directions.
Clearly, the behaviors observed require additional investigation to fully understand
their consequences.
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Figure 5. Normalized bending moment versus macro upper surface strain


